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Abstract: Two nuclear models for higher energy calculations have been developed in the regions of
high and low energy transfer, respectively. In the former, a relativistic hybrid-type preequilibrium
model is compared with data ranging from 60 to 800 MeV. Also, the GNASH exciton preequilibrium-
model code with higher energy improvements is compared with data at 200 and 318 MeV. In the
region of low energy transfer, nucleon-nucleus scattering is predominately a direct reaction involving
quasi-elastic collisions with one or more target nucleons. We discuss various aspects of quasi-elastic
scattering which are important in understanding features of cross sections and spin observables. These
include 1) contributions from multi-step processes; 2) damping of the continuum response from 2p-2h
excitations; 3) the “optimal” choice of frame in which to evaluate the nucleon-nucleon amplitudes; and
4) the effect of optical and spin-orbit distortions, which are included in a model based on the RPA the

DWIA and the eikonal approximation.
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Introduction

High energy nucleon-nucleus scattering provides an excel-
lent tool for probing nuclear structure. It also has many prac-
tical applications which are supported by the nuclear data
libraries,! such as the development of particle accelerators.?
The need to understand the full energy spectrum has stim-
ulated the development of nuclear models for preequilibrium
and quasi-elastic reactions which dominate the spectrum at
high excitation. This paper is divided into two parts. The
first part describes comparisons of both a relativistic hybrid-
type and the GNASH exciton-type preequilibrium models to
higher energy data. The second part investigates extentions
and corrections to the standard quasi-elastic scattering model
based on Glauber theory and the RPA nuclear response func-
tion.

The Preequilibrium Region

The Hybrid-Type Model

In this section a hybrid-type preequilibrium model is pre-
sented, which differs from that described in the literature 3 by
incorporating an intranuclear transition rate based on realistic
mean free pathes in nuclear matter, relativistic corrections to
the particle emmision rate, a relativistically invariant free scat-
tering kernel for calculating angular-distributed spectra, and
correct inclusive-model chaining.

The double differential cross section for the emission of a
particle v with energy € into the solid angle {1 is

dfi?z = or)_Wy(e,n)Q(n,2) D(n) (1)

where o is the reaction cross section, W, (e, n) is the particle
emission rate per MeV, Q(n, ) is the occupation probability
for the exciton angular-distributed state (n,{1), and D(n) is
the depletion factor.

The particle emission rate is given by

W, (e,n) = (nX.)p m

where ,, X, is the number of nucleons of type v in the exciton
state n, which satisfies 3°,(,X,) = p, where p is the num-
ber of particles in the exciton state n, and n = p + h, where
h is the number of hole states. p = (1 - ‘—'%A)"_z -("T_ll is

obtained from the William’s level-density formula with the in-
cident energy F and separation plus Pauli-exclusion energy A
for particle v. The intranuclear particle transition rate A" has
been relativistically parameterized to the mean-free paths of
protons in nuclei from 27 Al to 2°®Pb in the energy range 40 to
200 MeV 4

/\+(e) = % (sec™!)
gy c? 2
A=yt~ (e+uucz) )

with ¢ = 3-10% fm/sec. p,c? is the v-type nucleon rest en-
ergy, and A\, = (4.94 + 1.6f) — 1.21exp (— E/60) fm, where
f =1-A/208 for 27 < A < 208. Finally, the relativistic emis-
sion rate A% (e) is (1 + €/2p,c?) times Ericson’s expression 5
for the nonrelativistic emmision rate obtained from detailed
balance

2s, +1

) v ean(d) ()

/\f(e) = (1+ m
with s, the spin and o, (€) the inverse cross section for the
v-type particle.

Expressions for Q(n,?) & and D(n) 7 are well established
in the literature and have been used in Eq. (1). It can be
shown,? in the context of the preequilibrium model’s use of the
free scattering kernel, which forms the basis of Q(n,{1), that
by using relativistic transformations between three frames of
reference, both the the free scattering kernel and its eigenvalue
equation are relativistic invariants, and so therefore, is Q(n, ().

Finally, because the hybrid model is an inclusive model
in which all p particles in the n** exciton state are capable
of intranuclear transitions or emissions, the proper chaining is
n — 3n, not n — 2n,% and the former has been used in Eq. (1).

Equation (1) is only a preequilibrium model. It contains
neither an evaporation nor a Hauser-Feshbach model. The
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Figure 1: 90 MeV 2°Bi(p, p') and 2°°Bi(p,n) at 45° and 90°.
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Figure 2: 90 MeV %Zr(p, ') and °Zr(p, n), angle integrated.
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Figure 3: 200 MeV ®7Ay(p, p'), angle integrated.

Eq. (1) model has been benchmarked 1 at incident energies
E < 200 MeV with respect to data and the ALICE code.”
Figures 1-3 show comparisons at 90 and 200 MeV. A surface
model ! with a hole potential of ~~20 MeV has been imple-
mented in Eq. (1). This hardens the spectra, which is es-
pecially evident in Figs. 2 and 3, making this hybrid model
comparable to the geometry-dependent hybrid (GDH) model.
Figure 4 shows a higher energy case. It is typical of cases in
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Figure 5: 200 MeV 27 Al(p,p') at 15°, 45°, 90°, and 120°.
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Figure 6: 318 MeV 298Pb(p,n) at 7.5° and 30°.

which Ejpncident = 300 MeV: the hybrid preequilibrium model
underpredicts the observed spectra by a factor of two or more.
Relaxing the condition of n — 3n chaining would improve the
low-energy spectra somewhat, but would have little impact at
intermediate to high emission energies. However, a more severe
constraint is the saturation of the product of depletion factors
D(n) to the value of 1 after a two or more exciton generations,!°
thus contributions from higher exciton states are disallowed.
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The GNASH Code
The GNASH exciton-type preequilibrium code 2 has re-

cently been augmented with higher-energy improvements in-
cluding the nuclear surface model, level density formula, mul-
tistage preequilibrium, and both phenomenclogical and theo-
retical angular-distributed spectra models.!® Figures 5 and 6
show comparisons to data at 200 and 318 MeV. Again, for
Eipcident > 300 MeV, GNASH underpredicts the spectra.

Both preequilibrium models, hybrid and exciton, do not
model the quasi-elastic region, which is clearly evident in the
forward-angle data (§ = 7.5°) seen in Figs. 4 and 6. Meth-
ods for treating various aspects of reactions in this region are
discussed in the next section.

The Quasi-elastic Region

The region of quasi-elastic scattering bridges the gap be-
tween the low-lying discrete states and the region of compound
and pre-equilibrium reactions. The basic reaction mechanism
is the single-step quasi-free scattering of the projectile off of
a target nucleon. Quasi-elastic scattering therefore offers a
useful tool for studying the underlying two-body interaction
and its modification by the nuclear medium. It can also be
used to study the structure of the nucleus by seeing how it re-
sponds to large energy and momentum transfer, as well as to
spin and isospin transfer which can be delivered by hadronic
probes. Although signatures of shell structure, such as low-
lying collective states and giant resonances, disappear at exci-
tation energies above about 20-30 MeV, the nucleus continues
to respond collectively in the quasi-elastic region through the
residual particle-hole interaction, which has a different char-
acter in each spin-isospin channel. This collectivity manifests
itself not in sharp states or resonances, but in the gross features
of the spectrum, such as shifts in the position and magnitude
of the quasi-elastic peak and deviations of the spin observables
from the free NN values. Recent experiments at TRIUMF 1415
and LAMPF 16 have clearly observed these effects in (p,p),
{(p,n), and (n,p) reactions near 300 MeV.

In order to get a good theoretical handle on the reaction
mechanism and nuclear-structure input required to understand
the features of the data, we have investigated several aspects of
quasi-elastic projectile-nucleus scattering, which will be briefly
outlined in the remainder of this paper. These include 1) the
contribution of multi-step processes; 2) the effect of collisional
damping of the nuclear response; 3) the “optimal” frame in
which to evaluate the two-body amplitudes; and 4) the effect
of optical and spin-orbit distortions, which are included in a
continuum response calculation using a technique based on the
DWIA and the eikonal approximation. These topics are dis-
cussed in more detail in Ref. 27.

The Standard Reaction Model

The standard method for calculating quasi-elastic observ-
ables assumes that the N-nucleus cross section can be written
as a product of the two-body cross section times the nuclear
response function

do

adE = Vo 5§ U@ s @) srsee) ©

where ¢ and w are the momentum and energy transferred to
the nucleus. The sum is over spin (S) and isospin {T) transfer.
Srs is the reponse function in the TS channel, and frg is the
corresponding piece of the free NN amplitude. The trace is

over both projectile and target nucleon spins. The normaliza-
tion factor N.sr accounts for the attenuation due to the strong
absorption. It is the effective number of nucleons seen by the
projectile, and is determined in Glauber theory from the in-
medium total NN cross section o

Nup = [ db1(s)e™® (6)

where the thickness function T'(b) is the integral of the nuclear
density along the projectile’s path at impact parameter b. At
intermediate energies ¢ it is typically 20 to 30 mb, and the
reaction is strongly surface-peaked — the main contribution
coming from impact parameters where the density is about
one-fourth the central value.

If the nuclear response is evaluated in the plane-wave im-
pulse approximation (PWIA) it contains no information that
the reaction is surface-peaked. However, this is an important
feature which can dramatically alter the response. To include
this effect, the slab model was developed by Bertsch, Esbensen,
and Scholten.!” In this model the surface region of the nucleus
is approximated as a semi-infinite slab of nuclear matter. The
most important ingredient in the model is not the slab wave-
functions, but the use of the surface-peaked probing field

'9q(;) — es‘q"-i-‘e—aT(b) (7)

in the calculation of Srs{q,w). This can be thought of as
the product of incoming and outgoing eikonal distorted waves
which are evaluated using only the absorptive part of the cen-
tral optical potential.

The main feature of the slab-model response, in contrast
to a plane-wave response, is that it has a long tail in w. As
we will see later, this tail results from the momentum transfer
in the distortion, which changes the momentum transfer on
the hard collision. Since it includes this important effect, the
slab-model is much more successfull in describing quasi-elastic
scattering than simpler models based on plane-wave probing
fields {such as the Fermi-gas model). Examples of cross sec-
tions and spin observables calculated in the slab model can be
found in Refs. 15,16,18.

If RPA correlations are included the response is different in
each spin-isospin channel. In the TS = 00 channel the resid-
ual particle-hole interaction is attractive and the strength is
pulled down to lower excitation energy, whereas it is pushed
to higher energies in the spin and isospin channels where the
interaction is repulsive. Thus in charge-exchange reactions the
quasi-elastic peak is moved to higher excitation, and in (p, p')
the spin observables can deviate substantially from the values
based on the free response, since different channels dominate
in different regions of w. Figure 7 shows a sample calculation
from Ref. 15 of the analyzing power and spin-flip probability
calculated from Eq. (5) using the RPA slab-model response.
While the slab-model cannot account for the sharp features
seen in the data at low excitation, which are associated with
resonances of the finite system, the calculations are neverthe-
less in reasonably good agreement with the gross features of
the data, suggesting that we are indeed seeing the collectivity
predicted by the RPA| even at higher excitation energies.

Multi-Step Processes

The standard reaction model can be extended using Glauber
theory to include the contribution from multi-step processes
in which the projectile has quasi-free collisions with more than
one target nucleon. The full cross section can be expressed as
a sum over n-step processes 1920
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Figure 7: Analyzing power and spin-flip probability for

$4Fe(p, p') at 290 MeV from Ref. 15.
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W, describes the sequence of n hard collisions, which is es-
sentially a convolution of n two-body cross sections and n
one-step response functions. The distortion factor D, ac-
counts for absorption on the remaining A — n nucleons, and,
like Nz, depends on the in-medium NN cross section 4 (in
fact Dy = N,y). Fortunately, the series in Eq. (8) converges
rapidly: successive terms are smaller by roughly an order of
magnitude in the region of the quasi-elastic peak 1° so it is
usually sufficient to keep only the first two terms. Sample cal-
culations which include two-step contributions can be found in
Refs. 16,19,20. In (p,p') reactions the two-step contribution
is typically only ~5% of the single-step at the quasi-elastic
peak, although it eventually dominates the one-step at higher
excitation energies. In (p,n) and (n,p) reactions the two-
step can be somewhat larger relative to the one-step, because
there are two orderings of charge and non-charge-exchange col-
lisions, and because the non-charge-exchange collision involves
the larger isoscalar part of the NN interaction. Furthermore,
it can be larger at lower incident energies (say around 200
MeV), because Pauli blocking is more effective in reducing the
in-medium NN cross section, which decreases the absorption
and increases the two-step relative to the one-step cross sec-
tion. Figure 8 shows the 0° “Zr(p,n) cross section at 200
MeV. The dotted line shows the two-step contribution and
the solid line is the sum of one and two-step contributions.
Data are from Ref. 21. In this case the one-step response
was evaluated in a full finite-nucleus calculation based on the
Second RPA formalism 22 which includes the effect of 2p-2h
damping. The two-step was calculated using the slab-model
response functions. The slab response does not contain shell
structure, which gives rise to the two peaks below ~20 Mev
in the one-step calculation, but it should be adequate for the
two-step, since any detailed structure will be washed-out by
the convolution integrals which yield W3(¢,w). Comparing the
calculation to the data, we see that the full spectrum out to
~50 MeV is nicely explained by including the two-step. This
calculation and its implications for the issue of quenching of
Gamow-Teller strength are discussed in more detail in Ref. 20.
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Figure 8: 200 MeV %Zr(p,n) at 0°. The two-step contribution
is shown by the dotted line, and the solid line includes both
one and two-step contributions. Data is from Ref. 21.

2p-2h Damping of the Continuum Response

The response function can be substantially altered at high
excitation by the collisional damping of single-particle motion,
which corresponds microscopically to the coupling of 1p-1h to
2p-2h or higher configurations. The formalism for including
this coupling in full finite-nucleus calculations, known as the
Second RPA, has been developed and successfully applied to a
variety of reactions.2? The difficulty is that the method involves
very large basis calculations which rapidly become numerically
infeasible at large ¢ and w (for example, even in the giant
resonance region there are hundreds of 2p-2h states per MeV
in heavy nuclei).

To overcome this problem we have developed an approxi-
mate method for including the 2p-2h damping which can easily
be applied in regions of high energy and momentum transfer.??
The basic idea is to replace the microscopic coupling to specific
2p-2h configurations with empirical information already con-
tained in the measured single-particle spreading widths and
low-energy phenomenological optical potentials. These are
used to construct the self-energies of RPA p-h vibrations which,
in a semi-classical limit, depend only on their energy, spin, and
isospin. This simplification allows the full response including
damping to be expressed as an integral over the RPA response

srs(0,0) = [ dESE0,B) lors(B.w) + prs(B, o)

_ % rTs(w)/Z
[E - w = Ars(@)]* + [Trs(w)/2)?

ETs(w) = ATs(w) + tTTs(w)/Z (9)

p1s(B,w)

The Lorentzian function prs(E,w) gives the RPA states an
energy-dependent shift Azg(w) and width I'rg(w), which cor-
respond to the real and imaginary parts of the self-energy
Trs(w) of states with energy w, spin S and isospin 7. Given
the RPA response function, Eq. (9) provides a simple method
for including the effect of collisional damping once Xrs has
been determined.

As shown in Ref. 23, the width T'rg(w) can be accurately
estimated from the empirically determined widths of single-
particle and single-hole states v, (w) and 7p(w)
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Trs = 2 [ del(e) + me - o)l érs (10)

The full width is simply a classical average width for the par-
ticles plus holes, multiplied by a factor £75 which arises from
the quantum coherence of particle and hole decay amplitudes.
In the semi-classical model, £75 is zero in the T'S = 00 chan-
nel due to a cancellation between single-particle self-energy
diagrams and diagrams coming from the interference between
particle and hole decay amplitudes. In the spin-isospin chan-
nels (T'S # 00), on the other hand, the interference diagrams
are themselves small so {75 =~ 1 and the full width is roughly
the average of particle and hole widths.

To complete the evaluation of Xrg, it remains only to spec-
ify how the particle and hole widths ~, and 5, are determined
empirically. Above the Fermi sea the single-particle widths
can be deduced from matrix elements of the absorptive part of
the low-energy optical potential, and below the Fermi sea they
are determined from the measured spreading widths of hole
states. Empirical data for these quantities have been compiled
for medium-heavy nuclei by Mahaux and Ngé.24 The results
are reasonably well described by the continuous parameteriza-
tion

e? 110?
= 215 v
() (e2 71 ) e i) Me (1)

which is assumed to be symmetric about the Fermi energy, so
that y(e) = vp(e) = yu(—¢). Using this parameterization, the
the full width can be calculated from Eq. (10), and the real
self-energy can be obtained from the imaginary part using a
dispersion relation.

Now that Xrg has been determined, we can return to
Eq. (9) and calculate the effect of 2p-2h damping on the slab-
model RPA response functions. There is no damping in the
TS = 00 channel, but in the T'S # 00 channels the response is
quenched at the peak and enhanced at higher excitation ener-
gies. The effect of damping should therefore be large in charge-
exchange and spin-flip reactions, but small in (p,p') which is
dominated by isoscalar non-spin excitations.

Figure 9 shows cross sections, calculated using the slab re-
sponse and Egs. (5,9-11), for the 300 MeV 54Fe(n, p) reaction
along with data at 5°, 8°, and 12° from Ref. 14. The RPA
(dashed) and RPA+2p-2h (solid) curves also include the con-
tribution from double scattering. Comparing the solid and
dashed curves, we see that the effect of 2p-2h damping is to
bring the 1p-1h RPA calculations into nice agreement with
both the magnitude and overall shape of the experimental
spectra. The magnitude is governed primarily by N,zs, which
should be fairly accurately determined since it also yields the
correct normalization for the (p,p') cross sections at 290 MeV.

It should be emphasized that, although these calculations
use the slab response, the method can be applied to any RPA
response function. Recently, Co' et al. 25 used it to estimate
the effect of 2p-2h damping on the (e, ¢') charge response in 12C
and %°Ca, which was treated in a full finite-nucleus continuum
RPA. They found that the discrepancy previously observed
between theory and experiment can be explained by a combi-
nation of the the 2p-2h damping and an effect due to the mean
field non-locality.

Optimal Frame for Two-Body Amplitudes

So far we have dealt with questions related to the nuclear
structure. It is also important to correctly treat the reaction
mechanism. In this section we turn to the question of how
to evaluate the two-body amplitudes which describe a quasi-
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Figure 9: Charge-exchange cross sections compared to experi-
mental data from Ref. 14.

elastic collision. In the impulse approximation they are asso-
ciated with the free on-shell amplitudes derived from exper-
imental phase shifts. Eq. (5) presumes that the NN ampli-
tudes depend only on the incident energy and the momen-
tum transfer ¢, but in general they also depend on the mo-
mentum of the struck nucleon, which varies due to its Fermi
motion. In order to calculate quasi-elastic cross sections it
is necessary to integrate over the struck nucleon’s Fermi mo-
mentum. This problem is greatly simplified if the two-body
amplitudes are factored out of the integration by evaluating
them in a frame where the struck nucleon’s momentum has a
constant “optimal” value. Such an approximation is clearly
required in order to derive a formula with the factorized struc-
ture of Eq. (5). The question of how best to choose this frame
has been answered in the non-relativistic theory by Gurvitz
and collaborators.?® The result depends on both momentum
transfer and excitation energy. In the case of elastic scatter-
ing (w = 0) the best choice is the Breit frame, in which the
struck nucleon has momentum §= —§/2. At the quasi-elastic
peak (w = ¢?/2m), the struck nucleon is on average at rest,
and the optimal frame is the two-body laboratory frame where
7 = 0. In the general case (arbitrary w), the struck nucleon’s
momentum is determined by requiring that it satisfies energy
conservation: w = (p'+4§)?/2m — p?/2m, and that it lies along
the only preferred direction: that of the momentum transfer
¢. Then the optimal momentum is given by
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Popt = *% (1 - 2%0-) (nonrelativistic)
ot =~ 1- 241+ _Am? (relativistic) (12)
Popt 5 p qz —o?

The second line gives the result using relativistic kinematics.
Note that p,p: reduces to zero at the quasi-elastic peak and
to the Breit-frame momentum at w = 0. A diagram of the
optimal frame kinematics is shown in Fig. 10.

Since the experimentally determined amplitudes are usu-
ally given in the center-of-mass (c.m.) frame, it is necessary
to perform a Lorentz boost to the optimal frame. The method
for performing this boost is described in Ref. 27, and involves
extracting the invariant Dirac amplitudes from the c.m. am-
plitudes and then sandwiching them between Dirac spinors in
the optimal frame.

The two-body cross section in the optimal frame is ex-
pressed in terms of the optimal amplitudes by

do
?Q—o; = Jopt t'{fgptfo;;t} (13)

where Jop is the Jacobian for the transformation between
c.m. and optimal frame variables.

Perhaps the most important aspect of the optimal frame
is that the invariant energy s varies rapidly with w due to its
dependence on Pypt , and it can be quite different from the en-
ergy in the two-body laboratory frame. This can be seen by
examining the effective laboratory kinetic energy defined by

TZ”

(s — 4m?)/2m

- E\Ep —- k'ﬁopt —m? (14)
m

which can vary by more than ~ £100 MeV over the region
of the plane-wave response. Such variation will clearly have
a large effect on the amplitudes in regions where they are
strongly energy dependent.

To illustrate this point, and to show how well the optimal
factorization works, consider x-nucleus scattering in the region
of the Ass resonance, where the #N amplitudes vary rapidly
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Figure 11: The effective laboratory kinetic energy in the opti-
mal frame for pions incident at 291 MeV.
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Figure 12: Slab-model calculations with optimal and

two-body-lab #N amplitudes compared to data from Ref. 28.

with energy. Figure 11 shows the effective laboratory kinetic
energy in the optimal frame for 291 MeV pions scattered at
various angles and plotted in the region where the plane-wave
Fermi-gas response is nonvanishing. At the large angles we
see a variation in TZ” of more than 200 MeV over the al-
lowed regions of w. Figure 12 shows cross sections for the 291
MeV 7+ —%Ca reaction at 120° using the slab response func-
tion and the optimal and two-body-lab amplitudes. Data are
from Ref. 28. We see that the optimal calculation agrees well
with both the position and magnitude of the peak, while the
two-body-lab calculation fails in both respects. At high w the
optimal curve is above the two-body lab curve, because as w
increases, TE” decreases, and the 7N cross section rises at it
nears the peak if the Agzs resonance. The optimal frame also
provides a very good approximation to a full calculation where
the two-body amplitudes are inside the integration over the nu-
cleon’s Fermi momentum.?” In intermediate energy N-nucleus
scattering TZ‘” also varies substantially with w, but the effects
are smaller since the NN amplitudes are more slowly varying
with energy.
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Figure 13: Surface response function calculated from Eq. (15).
The dashed line is the plane-wave Fermi-gas response. In the
tail region above ~36 MeV the momentum transfer on the
hard collision is always greater than the external momentum
transfer §.

Distorted-Wave Response Calculation

To date, most calculations of the continuum response based
on the PWIA or DWIA have used either the c.m. amplitudes,
the two-body-lab amplitudes, or the Breit-frame amplitudes.
However, these choices violate energy conservation at the two-
body level and cannot be consistently applied at arbitrary en-
ergy transfers. Even with the optimal amplitudes, the stan-
dard reaction model breaks down at large excitation energies
beyond the region of the plane-wave response. In this re-
gion, if all the momentum transfer occurs on the hard collision
then the optimal momentum must be greater than the Fermi-
momentum kr in order to satisfy energy conservation. The
way out of this problem is to explicitly include the momentum
transfer in the distortion, which changes the momentum trans-
ferred on the hard collision, and thereby permits scattering at
high w without violating energy conservation.

Distortion can be included in a relatively simple model
based on the DWIA and the eikonal approximation. In Ref. 27
such a model was presented in which the probing field included
the full spin-dependent (eikonal) distorted waves as well as the
optimal-frame amplitudes. The full response in this model is
expressed in terms of a convolution integral with the plane-
wave response Rpy

dz ! L . L.
S(g,w) = /(2—:)*—2 Rew (§-1,w) |AG) fopt (@~ 1)
AF) = / &b U SO T (b) (15)

where ! is the momentum transferred in the distortion. This
expression is slightly more complicated if the spin and isospin
dependence are included, in which case A becomes a matrix
and fope a vector in the space of projectile spin matrices. S (%)
is the eikonal phase which involves the central and spin-orbit
optical potentials. The main new ingredients not present in the
standard model of Eq. (5) are the optimal frame NN ampli-
tudes and the use of the full optical potential in the distorted
waves. Furthermore, the optimal amplitudes are now inside
the integration over g/, and are evaluated at the same momen-
tum transfer as the plane-wave response. This insures that the
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Figure 14: Spin observables with and without the relativistic
m* effect compared to recent data from TRIUMF 3% for 290
MeV 5¢Fe(p,p') at 20°. Solid curves use m* = m, and dashed
curves use m* = 0.85m.

optimal momentum is always less than the Fermi momentum,
even at high w.

The simplest version of the standard model (Eq. 5) can be
recovered from Eq. (15) by using only the central absorptive
term in the optical potential and factoring fo,¢ and Rpw out
of the integral by evaluating them at the external momentum
transfer §. A less severe approximation is to only factor f,,:
out of the integral and leave Rpw inside. Then we obtain a
surface response function similar to the slab-model response.
Figure 13 shows a calculation of the free response with and
without distortion based on Eq. (15) with fo,r — 1. We have
used the Fermi-gas response, Rpw — RFrg, and normalized by
dividing by N.gr. In both curves Rpg is evaluated at approxi-
mately one-third nuclear matter density. The main feature of
this calculation is that the distortion produces a long tail in w
which is not present in the plane-wave response. The reason
for this is clear from Eq. (15): the convolution integral spreads
the plane-wave response over many values of §. The same ef-
fect is responsible for the tail in the slab-model response. An
important consequence is that in the region where the plane-
wave response vanishes, there is no contribution to the integral
if |§— ¢!| < |¢’|, because Rr¢g continues to vanish at smaller
momentum transfers. Therefore, in the tail region the momen-
tum transfer on the hard collision is always greater than the
external momentum transfer. This can have a large effect on
the observables if the two-body amplitudes vary rapidly with
increasing §.

Figure 14 shows calculations for the 290 MeV %‘Fe(p,p')
reaction at 20° along with data for the complete set of spin
observables which were recently measured at TRIUMF. These
calculations include the full spin-dependent distortion and the
effect of RPA correlations, which are included by using the
interacting Fermi-gas model to evaluate the plane-wave re-
sponse. We therefore refer to this as the distorted-wave Fermi-
gas model (DWFQG). The residual interactions are essentially
the same as those used in the slab model.1’?" Note that the
w-dependence of the observables is fairly well predicted by the
combination of optimal amplitudes and RPA response func-
tions. Dotted lines show results which incorporate modifica-
tions of the NN amplitudes due to the relativistic effective
mass m*, as proposed by Horowitz and Igbal.?® The optimal
amplitudes were evaluated by sandwiching the invariant Dirac
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Figure 15: Ratio of longitudinal to transverse isovector spin
response along with data from Ref. 32. The solid line is the
infinite nuclear matter result, and the dashed and dotted lines
are calculated in the distorted-wave Fermi-gas model as de-
scribed in the text.

amplitudes between spinors with mass m* = 0.85m. This ef-
fect does not lead to improved agreement in every case, but it
at least moves the curves in the right direction.

In Figure 15 the DWFG model is used to calculate the ra-
tio of longitudinal to transverse isovector spin response, which
has been a subject of some controversy in the last few years.
Theoretical models based on 7 4 p exchange predict that at
moderate momentum transfers the residual interaction should
be substantially different in the longitudinal (¢-§) and trans-
verse (¢ x §) channels.3® In our calculations we use the same
residual interaction as given in Refs. 30,31. Furthermore we
include in the Fermi-gas response AN~! as well as NN~! ex-
citations as described in these references. As seen in Fig. 15,
the longitudinal response can be 2-10 times as large as the
transverse response in infinite nuclear matter. However, as
seen by the dotted and dashed lines in Fig 15, the difference is
completely washed out by the distortion. This effect is mainly
due to the absorptive potential in the distortion, although the
other effects in Eq. (15) also help reduce the ratio.

The numerical results shown here have for simplicity em-
ployed either the slab or the Fermi-gas model for the nuclear
structure. It should be emphasized, however, that the tech-
niques are general and can be used with more sophisticated
structure input if desired. In particular, the method for in-
cluding 2p-2h damping based on Eqs. (3-11), and the distorted-
wave model of the continuum response in Eq. (15) can be ap-
plied to any version of the plane-wave RPA response. One
need only calculate the plane-wave response on a grid in ¢ or
w, and then perform the necessary convolution integral, as in
Eq. (9) or (15). It is also easy to merge the 2p-2h damp-
ing and distorted-wave effects into one calculation by applying
the damping integral to the response Rps before inserting it
into the distortion integral. When these effects are combined,
the result is a simple yet comprehensive model for continuum
scattering, which includes the spin-dependent distortion of the
projectile, and the effects of RPA correlations and collisional
damping which describe the struck nucleon’s final state inter-
action.
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